Vous n'êtes pas connecté. Connectez-vous ou enregistrez-vous

 » Mathématiques » Mathématiques au Lycée » 

dérivées d'une fonction en 1


Voir le sujet précédent Voir le sujet suivant Aller en bas  Message [Page 1 sur 1]

1 dérivées d'une fonction en 1 le Lun 25 Jan - 17:20

danyboone59


Posteur Motivé
Posteur Motivé
bonjour,

je dois trouver les nombres dérivée de la fonction g en 1
g:x=5-3x

avec la soustraction j'ai du mal.... pouvez vous m'aider svp?

merci
danyboone59

Voir le profil de l'utilisateur

2 Re: dérivées d'une fonction en 1 le Lun 25 Jan - 17:36

danyboone59


Posteur Motivé
Posteur Motivé
@danyboone59 a écrit:bonjour,

je dois trouver les nombres dérivée de la fonction g en 1
g:x=5-3x

avec la soustraction j'ai du mal.... pouvez vous m'aider svp?

merci
danyboone59

je pense faire :
j(1+h)-j(1)/h
j(1+h)=5(1+h-3(1+h)^2-1
= 5+5h-3(1+2h+h^2)-1
= 1+11h+3h^2

j(1)=(5x1)-3x1^2-1
= 5-3-1
= 5-4
=1

j(1+h)-j(1)/h = 1+11h+3h^2-1/4
= 11h+3h^2/h

et là je cale complètement
aidez moi svp
merci

Voir le profil de l'utilisateur

3 Re: dérivées d'une fonction en 1 le Lun 25 Jan - 17:40

danyboone59


Posteur Motivé
Posteur Motivé
[quote="danyboone59"]
@danyboone59 a écrit:bonjour,

je dois trouver les nombres dérivée de la fonction g en 1
g:x=5-3x

avec la soustraction j'ai du mal.... pouvez vous m'aider svp?

merci
danyboone59

je pense faire :
j(1+h)-j(1)/h
j(1+h)=5(1+h-3(1+h)^2-1
          = 5+5h-3(1+2h+h^2)-1
          = 1+11h+3h^2

j(1)=(5x1)-3x1^2-1
    = 5-3-1
    = 5-4
    =1

j(1+h)-j(1)/h = 1+11h+3h^2-1/4
                    = 11h+3h^2/h
= h(11+3h)/h
= 11+3h
donc j'(1)=11

je crois bien que c'est cela Sad mais je ne suis pas sûr
pouvez vous me confirmer svp, urgent
merci
danyboone59

Voir le profil de l'utilisateur

4 Re: dérivées d'une fonction en 1 le Lun 25 Jan - 21:09

Professeur J

avatar
Professeur de Mathématiques
Professeur de Mathématiques
Salut !

Déjà, tu peux calculer à part :

$g(1)=-3\times 1 +5=-3+5=2$
et
$g(1+h)=-3\times (1+h)+5=-3-3h+5=-3h+5$

Ensuite tu dois regarder la limite quand $h$ tend vers $0$ de :
$\frac{g(1+h)-g(1)}{h}$...

Voir le profil de l'utilisateur http://www.mathsendirect.fr

5 Re: dérivées d'une fonction en 1 le Mar 26 Jan - 7:39

danyboone59


Posteur Motivé
Posteur Motivé
bonjour,
je pense que vous devez avoir fais une erreur, en effet :
g(1+h) = 5-3-3h
=2-3h


g(1)=2

donc

g(1+h)-g(1)/h= 2-3h-2/h=-3x1=-3

g'(1)=-3

exact?
merci
danyboone59

Voir le profil de l'utilisateur

6 Re: dérivées d'une fonction en 1 le Mar 26 Jan - 18:47

Professeur J

avatar
Professeur de Mathématiques
Professeur de Mathématiques
Oui effectivement c'était $+2$ Smile

Voir le profil de l'utilisateur http://www.mathsendirect.fr

7 Re: dérivées d'une fonction en 1 le Mar 26 Jan - 20:17

danyboone59


Posteur Motivé
Posteur Motivé
merci beaucoup !!! pour votre aide précieuses Very Happy bounce

Voir le profil de l'utilisateur

Contenu sponsorisé


Voir le sujet précédent Voir le sujet suivant Revenir en haut  Message [Page 1 sur 1]

Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum