Accueil du forum
Pour afficher la ChatBox et profiter de l'aide gratuite sur le forum, inscrivez-vous puis connectez-vous !

Connexion
Aimez notre page Facebook !
Statistiques
Nous avons 1160 membres enregistrésL'utilisateur enregistré le plus récent est magaliNos membres ont posté un total de 6688 messagesdans 760 sujets
Qui est en ligne ?
Il y a en tout 12 utilisateurs en ligne :: 1 Enregistré, 0 Invisible et 11 Invités

Professeur T

Voir toute la liste

Les posteurs les plus actifs du mois
2 Messages - 33%
2 Messages - 33%
1 Message - 17%
1 Message - 17%
Les posteurs les plus actifs de la semaine
Publicité
Partagez
Voir le sujet précédentAller en basVoir le sujet suivant
Curry
Professeur de Mathématiques
Professeur de Mathématiques
Messages : 289
Voir le profil de l'utilisateur

Défis tout niveau - 5ème défi

le Lun 20 Juin - 14:45
Réputation du message : 100% (1 vote)
Bonjour à tous, un nouveau défi disponible pour tout niveau. Encore une fois il est possible de se faire un algorithme pour trouver la réponse. A noter que je n'y ai pas encore trop réfléchi et je n'ai donc pas encore la solution (mais pas de soucis j'aurai bien une démonstration à vous proposer dans une semaine si personne ne l'a fait).

On considère les nombres $n-100,\ n-99,\ \ldots,\ n-1,\ n,\ n+1,\ \ldots,\ n+99,\ n+100$. Trouvez le plus petit entier $n>100$ tel que la somme des chiffres composant $n$ soit plus grande que la somme des chiffres de n'importe quel autre nombre de la liste.

Par exemple, $n=250$ ne convient pas puisque la somme des chiffres de $254$ est plus grande que celle de $250$.
Voir le sujet précédentRevenir en hautVoir le sujet suivant
Permission de ce forum:
Vous ne pouvez pas répondre aux sujets dans ce forum
Publicité